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ABSTRACT
Collaboration is an important component of most work activities.
We are interested in understanding how configurations of peo-
ple come together to create outputs over time. We propose an
interactive visualization tool (City on the River) for visualizing col-
laborations over time. The City on the River (CotR) visualization
shows the contributions and artifacts (“products”) of a team on a
timeline and the individuals on the team who contributed to each
product. CotR enables interactive analyses of each of these compo-
nents for answering questions such as, which people work together
on the most products, which products involve the most people,
what kinds of products were produced when and by whom, etc.
CotR can be used for analyzing diverse domains such as research
collaborations, conference participation, email conversations, and
software development. In this paper, we present the results of an ex-
periment to assess CotR for analyzing collaboration and outcomes
in GitHub projects. We compared the quality of answers, time to
answer, and approaches taken to analyze the project collaborations
by two groups of people: one group used the GitHub data displayed
in a spreadsheet; the other group used the GitHub data displayed
using CotR.

CCS CONCEPTS
• Human-centered computing → Open source software; Vi-
sualization systems and tools; Empirical studies in visual-
ization; • Software and its engineering → Collaboration in
software development;
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1 INTRODUCTION
Several visualization tools and techniques have been used to help
people understand and analyze collaboration within teams. In soft-
ware development, most of these focus on visualizations of artifacts
such as commits, files, modules, and libraries [5, 11, 16]. It is also im-
portant analyze the social and temporal structures in electronic data
to help in understanding collaboration [6]. Visualizing the collabo-
ration histories of teams is useful in understanding interactions and
outcomes resulting from collaborations. It also enables teams and
organizations to understand patterns of collaboration and outcomes
over time. Social interaction over time has been visualized to gain
insights into dynamic networks over time [6, 8, 24]. Other studies
present social and collaboration data along a timeline to allow indi-
viduals to reflect on contributions to a community [7, 10, 23]. The
visualizations in these past studies use various techniques including
area graphs, matrix and node-link diagrams in separate views.

Node-link diagrams in particular have been used to visualize
network evolution; however, there are several drawbacks to this
method: the graph may become too cluttered and difficult to under-
stand; animation requires additional time and memory while small
multiples requires more space; and, with nodes and links displayed
so far apart, it may become difficult to follow changes in nodes and
edges [16]. Additionally, when collaboration involves more than
two people, adding additional edges to the visualization may inflate
the perceived amount of productivity.

Presenting productivity using area graphs does not represent the
combinations of collaborators nor how such individual relationships
change over time [7, 10, 23]. The GitHub Visualizer provides a
swarm visualization of files changed between members. In this
visualization, animation is used to go between sequences, which is
not ideal as it increase the cognitive load of the end user [16].

We propose City on the River (CotR)–a timeline-based visualiza-
tion approach for understanding collaborative work output over
time. CotR represents collaborative activity that results in work
outcomes and maps these outcomes to individual contributions
within the same timeline. The design leverages how area graphs
(used famously in ThemeRiver [9]) allow people to adopt a stream
metaphor, view larger continuous parts, and identify silhouettes.
CotR displays area graphs where each stream represents an indi-
vidual’s contributions. These streams are displayed underneath a
time-based histogram of work artifacts. The contribution streams
are mirrored into individual paths through the stacks–hence, show-
ing the combinations of collaborators and bringing to mind the idea
of a city with tall buildings and paths. Hence, the name “City on
the River” as seen in Figure 2.
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In this paper we show how CotR can be used for visualizing
the evolution of collaborations over time in software development
teams. Software engineering is a collaborative effort and an increas-
ing number of tools (such as Git) are provided to support developers’
collaboration. Different collaborative practices or patterns may be
observed at different times during the software development pro-
cess, which may result in different outcomes.

The rest of this paper is organized as follows. In Section 2, we
present related work and in Section 3 we describe CotR and its
design and implementation. We demonstrate how CotR can be
used to analyze collaboration in software development over time
in Section 3.3. In Section 4, we present the results of an empirical
study to assess the effectiveness of CotR for analyzing collaboration
in GitHub projects over time. Finally, in Section 5, we conclude
with a discussion of future work.

2 RELATEDWORK
2.1 Collaboration Networks Over Time
TimeMatrix represents temporal social networks in a matrix-based
approach; it visualizes changes in nodes and edges using a Time-
Cell bar chart glyph. Similar to CotR, it requires less space than a
node-link diagram and represents strengths of relationships over
time [25]. Collaborations among researchers have also been visu-
alized as a means to represent researchers’ work online (not for
analysis)1. The kind of data represented visually in these systems is
not unlike that in CotR; however, CotR differs from these systems by
representing combinations of collaborations over a timeline rather
than representing it in a slice-by-slice chord diagram or dynamic
bar lists.

The intermediate tool Soylent was built to display connections
between email co-recipients and verify that detectable patterns
of contact (e.g., a tight core of densely connected people) were
visible and relevant to end-users. It includes a node-link diagram of
co-recipient relations between people within a start and end time.
Because scalability is an issue when drawing cluttered node-link
diagrams, the authors developed a minimalistic text interface that
summarises the interactions between people on an egocentric point
of view [6]. CotR supports a fuller visualization representation of
this minimalistic text interface.

2.2 Contributions in Community Platforms
Visually, CotR’s contributor streams are similar to approaches that
visualize data from communities as a measure of the collabora-
tion. AuthorLines, part of a larger tool that includes views of mem-
bers’ contributions, represents the number of threads initiated and
threads not initiated by the author in a timeline in order to let the
analyst get an idea of the individual’s posting activity in news-
groups [23]. iBlogVis also presents a timeline with the length of
the blog post represented by the height above the x-axis, while the
height below represents the number of comments [10]. Unlike these
approaches, CotR maps the collaboration within the products.

1For example see: (http://www.rjbaxley.com/p/publications.html) and (https://www.cs.
umd.edu/users/bederson/papers/index.html)

2.3 Collaboration in Software Development
Storylines is a visualization approach that has been applied to soft-
ware development to represent collaboration through the layout
and proximity of links that represent contributors; if people do
not work for some time, their link is disconnected from the main
group [14]. It displays a commit histogram below the links repre-
senting the number of files in each commit (work representation).
Unintentionally, our work closely resembles this representation by
also using potentially disconnected links to represent contributors,
but in CotR, the grouping of contributors’ collaborations is done
directly in the corresponding work representation. We also extend
this approach by supporting the splitting of links and area graphs
that aggregate the contributor’s work over time. As a technique,
storylines typically follow an optimization model to minimize edge-
crossings [14, 20]; however, in CotR, links are tied to the order of
the work outputs and optimization is currently outside our scope.

Tesseract is a system that visualizes the technical artifacts and
social network analysis within a software project [18]. It uses cross-
linked multi-perspectives for a timeline in order to help developers’
communication match the code dependencies. Similarly, CodeSaw
has separate area graphs above and below the timeline: the top
timeline represents code contributions while the bottom represents
project communication. By hovering over the stream, analysts can
get a brief summary of the developer [7]. Like CotR, the timelines
include product output (measured in commits) and there is a col-
laboration network view (measured in communication); however,
CotR ties collaboration to products (rather than basing it on com-
munication) and combines the network with the timeline.

Similar to Tesseract, Ariadne aims to bridge code dependencies
and communication to explore the socio-technical relationships,
and like CotR, it can identify artifacts in which individuals are
connected [4]. However, unlike CotR, it employs a node-link dia-
gram approach and focuses on awareness of development activities–
much like a dashboard like FastDash [2]. These dashboards typically
represent the current or recent collaboration in order to encourage
awareness among individuals, unlike CotR, which was designed to
allow an analyst look back on the history of the group or individual.

3 CITY ON THE RIVER
CotR represents a collection of work outputs called products on
which people contribute at a particular time. The data model for
CotR is shown in Figure 1. In software projects, we define a product
as a file-commit pair where each pair represents a file in a repository
commit. Each product should represent a roughly equal amount
of work associated with contributions in a team (for example, the
effort needed for each source code object is roughly the same). The
other product attributes are similarly mapped: name is filename;
description is commit messages; type is based on the extension of
the file; timestamp is when the commit occurred; the person who
contributed to the product is the developer who performed the
commit.

3.1 Visualization Design
In addition to following visual display techniques from Edward
Tufte [21], the final design makes use of feedback from researchers
in information visualization and software engineering. CotR has
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Same 
Project membership People contribute on

Timestamp

Name
End_time

TypeName
Start_time

Product

Description

Figure 1: Data Model: attributes of product in product-based
collaboration (rectangles are entities, ovals are attributes,
and diamonds are relations)

two major components: a chart (visualizing the data) and a naviga-
tion panel (interacting with the chart) as shown in Figure 2.

The chart displays a timeline divided into evenly spaced time
bins. As shown in Figure 2, the part above the x-axis displays the
products completed within each time bin. Each product is rep-
resented as a small brown rectangle with a shade to denote the
number of contributors and an icon to indicate its type. Individuals
who worked on that product are represented as colour-coded links
entering and exiting the product horizontally. A link is continuous
between time bins if the individual it represents contributed to
at least one product in each adjacent bin. Below the timeline, an
area graph, much like ThemeRiver [9], contains streams for each
individual; each stream expands or shrinks to match the number
of products worked on by that individual in the time bins. At a
glance, the end user (analyst) can see the amount of collaboration
and productivity within each time bin. Tall product stacks with
shorter stream heights mean many products were created with-
out much collaboration. Short product stacks with higher stream
heights represent collaboration taking place with fewer resulting
products.

Interaction: To enable the analyst to drill into and manipulate the
data, CotR also supports a number of interactive techniques present
in both the chart and navigation panel. From the chart, the end user
can manipulate size, find collaborations between people, and drill
down for information. Resizing the node dimensions, the number
of days in each time bin, and the chart width are all available by
dragging. The chart can be panned (while the navigation and y-axis
stay fixed) by using browser scrollbars. Other interaction in the
chart provides tooltips about the product nodes and streams by
hovering the cursor over them and highlighting related streams
or products. As shown in Figure 2, the navigation panel contains
controls that can be used to reset to the initial configured view;
modify the shading increments of products and links; and highlight
or filter the chart data. The analyst can also reorder the products
within each time bin by differnt attributes.

Highlighting or filtering the chart data is available for each of
the attributes – product types (“Products”), number of contribu-
tors (“Contributors”), and people who contributed to the products
(“People”). The navigation panel displays the different values (e.g.
for product type: “Document”, “Source code”, etc.) of each attribute
with their visual encoding and what percentage of these products
are currently highlighted or displayed in the chart as shown in
Figure 2.

For example, if the analyst wants to understand the collaboration
history of two people who worked on the same product, he or she
starts by highlighting both of the names together. The products the

people worked on together will be highlighted in the chart. The
shape of the timeline shows when the collaborations took place.

3.2 Implementation
CotR has been implemented using the JavaScript library D3.js2 and
currently runs on Firefox Browser. It can display approximately 300
products with minimal noticeable lag. In designing the visualization
approach, scaling for large numbers of products was not an initial
consideration.

3.3 Example Collaboration Scenarios
Because CotR implements a general collaboration data model (Fig-
ure 1), it can be used to visualize many collaboration scenarios.
Conference participation Figure 3 shows conference outputs
from 25 years of the CASCON conference [12]. In this case, people
collaborate on products such as papers, demos, posters, or work-
shops. In the case of a paper, the name is paper title, and description
is the papers’ abstract. The timestamp represents the year that the
contribution was presented at the conference. The people who con-
tribute to the product are the co-authors. Because the large number
of contributions in 25 years of data do not visualize well as is, we
added the cability to filter the data by topic area. We experimented
with LDA [3] and LSA [19] to define topics of the CASCON con-
tributions. The topics let the user of CotR select papers around a
specific theme using keywords.
Research networks Figure 4 represents collaboration of an indi-
vidual in a research network. From the visualization, we can see
the products in which many collaborators worked together. In gen-
eral, there seems to be fewer products before 2010, reaching high
productivity in 2012 before reducing productivity again in 2014.
Email Conversations The visualization presenting different peo-
ple in the same email conversations (where emails with the same
subject are replied to by different recipients) is shown in Figure 5.
This data is actual data from the emails received by the main re-
searcher (in blue) in early stages of this study. In these emails, you
can see how other another researcher (in pink) was highly involved
consistently over time, and near the end additional people made
up much of the correspondence (representing when participants
contacted the main researcher to be part of the user study).

4 USER STUDY
We designed a controlled user study to evaluate the effectiveness
and efficiency of CotR by comparing it with a text-based approach.
Our study is similar to the one conducted by Kang et al. [1]. We set
out to answer the following research questions:
RQ1: How do people approach data analysis using CotR vs. using a

text-based information source?

RQ2: Do analysts obtain better insights faster when using the CotR
visualization approach compared to the text-based method?
Our study follows a between-group design by having each partic-

ipant use one of two interfaces that display the dataset–a collection
of products produced by collaborators on a software development
team.We used a GitHub repository log of a project completed by stu-
dents in their third year software engineering course that spanned
2http://d3js.org/
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Figure 3: CotR showing the collaborations in a conference
through papers, demos, workshops, and keynote presenta-
tions.

Figure 4: CotR in an egocentric perspective showing the col-
laborations of an individual in a research network.

four months. We note that student data is acceptable in place of
actual industry records, because the two sources have been found
to be similar [17]. The two interfaces are CotR and a spreadsheet
program acting as a text-based alternative to the visualization. In
the controlled experiment, half of the participants used CotR and
half used the spreadsheet and log files to answer a set of questions
about collaboration and outcomes. There are many other ways we
could have represented developers’ interaction to compare with
CotR [7, 14]; however, we chose this interface because of its ubiquity
and similarity to what may be used if the original GitHub repository
was not available and because it enabled us to anonymize the data
for the study. As a plain text file, the product listings would be too
detailed and tedious to browse through; hence, we provide it in a
spreadsheet application with access to functions similar to those
found in CotR as shown in Table 1.

To answer RQ1, we collected notes taken, screenshots and mouse
clicks, and asked participants to talk aloud as they answered the
questions. To answer RQ2, participants were asked questions (Ap-
pendix A) about the collaboration in the project and their answers
were compared with answers provided by the actual Teaching As-
sistant (TA) for the course.

Preprocessing: A few steps are required to translate repository
log data into the CotR data model. A simple transformation would
represent each file in each commit as a product in our data model;
however, the number of products could be overwhelming to the
analyst using the visualization and several trivial products (e.g.,
file-commits when the action is to delete the file and move it’s
content elsewhere in another file-commit) would be unnecessarily
included. The data can be preprocessed using the following steps
to reduce the amount of potential products: format, clean, filter,

B. Navigation panel

A. Chart Individuals who work on 
product are represented as 

links going through it.

Stream height denotes the 
number of products worked 

on by that person.

The darker the brown shading on the 
rectangle, the more contributors 

worked on that product.

Each stream 
represents an 

individual person.

Modify node and 
link shading

Reorder products 
within time bins

Highlight or filter products 
based on attributes

Products within time 
bin (Feb 19, Feb 27]

Icon denotes 
product type; e.g.,

Source code

Database

Green part shows 
percentage “Database” 
products currently 
being displayed

Hovering the cursor 
over the stream:
1.

2.

Brings up a tooltip with 
the person’s name
Highlights all that person’
s products and links

Figure 2: Overview and description of features of CotR panel.
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Figure 5: CotR showing the email correspondence of people
in email conversations.

Table 1: Comparison of text alternate condition and visual-
ization condition used in user study.

Text-based alternative CotR
GitHub Contributor visualiza-
tion, Pivot Table of time bins
with contributor columns (mc1),
TRUE/FALSE columns for each
individual

Contributor stream for each
individual

Chart based on Pivot Table of
time bins vs. product type Product stacks with icons

Filtering, conditional format-
ting on the rows Filtering, highlighting

Dynamic time bin column with
access to change number of
days in each bin

Resizable time bins

Sorting for each attribute Sorting within the node stack
for some attributes

and merge. Depending on the nature of the development project,
different parameters might be chosen for each preprocessing step.

Format: A typical GitHub commit includes the time of the com-
mit, the author and a list of files being added, deleted or modified.
In the Format step, no file-commits are removed, but these different
attributes are parsed and organized with their file-commit.

Clean: When a file is moved in a GitHub repository, the log
records a Delete in the old location and an Add in the new location
within the commit where the move occurred. The Add and Delete
are collapsed into a single Move.

Filter: In the filter step, some of the data is trimmed by removing
files that are only committed once and removing all Delete file-
commit listings. It is assumed that a file committed once was neither
evolved nor was there any collaboration related to it. It is further
assumed that if a file was deleted, then its important content has
been moved elsewhere within another modified file. Additionally,
only listings with certain types might be included. For instance, in
our case of student project data, a file of type code, document or
similar is saved; these types of files were most important in grading.

Merge: Since each file can be committedmultiple times in a short
amount of time, in the merge step, products are merged together to
form a new product if the commit for the same file occurred within
a certain timeframe. This ideal timeframe depends on the data and,
specifically, what is known about the project’s schedules (e.g., a
sprint may take a month).

After the preprocessing, the project had 266 products and 7 in-
dividual contributors. It was processed from a GitHub repository
with 621 commits and 46323 lines of code. The product attributes
for a file-commit are as follows: name is filename; description is
commit messages; type is based on the extension of the file; times-
tamp is when the commit occurred; the person who contributed to
the product is the developer who performed the commit. When two
products are merged in theMerge step, the name and type stays the
same, the merged description concatenates the commit messages,
and the timestamp is that of the later commit. The contributors of
the product then make up the different developers or collaborators,
who committed the file within that time.

Text-based alternative Interface: The text-based alternative inter-
face displays the product listings (with headers) in a spreadsheet
application (i.e., LibreOffice 4.2.8 Calc3) such that each product is
in a row and each attribute of the product is listed in each column.
The participant had access to sorting, filtering, search, conditional
formatting, pivot tables, and chart creation. They also had access
to the GitHub Contributor visualization and the original repository
history log.

4.1 Study Procedure
The study consisted of three parts: tutorial (20-30 minutes), session
(30-40 minutes), post-session interview (5-10 minutes). The specific
questions used in the different parts are found in Appendix A.

1. Tutorial. At the start of the study, each participant was in-
troduced to one of the two interfaces with a series of short tutorial
videos and some additional time to get used to the interface and
review the tutorial content if needed. This method of learning the in-
terface is similar to the introductory video and training used in [1],
and much of the tutorial was designed using guidelines from [15].
After each video, participants were asked to answer some simple
questions (e.g., “How many products occurred between March 5
and March 17?”) to help them apply, and hence, retain the informa-
tion they have learned. We created similar tutorial video segments
for both interface conditions (e.g., how to adjust time bins), and the
tutorial questions were identical in each condition. Each tutorial
question had hints to help the participant recall how to use the
interface and answer the question, although use of the hints was
not required. If participants answered a question incorrectly, they
were shown how to answer it correctly with the interface.

2. Session. After completing the tutorial, participants were
shown their assigned interface with the software engineering stu-
dent project dataset. They were led through the study questions
(Appendix A) which were more complex (e.g., “Describe the na-
ture of the collaboration of each of the individuals”)–these kinds

3https://www.libreoffice.org/discover/calc/
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of questions are important when measuring the effectiveness of
visualizations [13].

3. Post-session interview. After completing the session, each
participant was asked about their experience with the interface(s).

4.2 Participants
Sixteen participants were recruited through the researchers’ aca-
demic network; participants had to have completed a Teaching
Assistant (TA) school term position in a computer science course
that required student group work at Canadian University. Partic-
ipants for each interface ranged across different age groups and
current level of education. Seven identified as female, while seven
identified as male; one identified as other and one preferred that
their gender not be recorded. Participants had between 1 to 12
terms (average: 3.62) working as a TA to oversee group projects
and all had used spreadsheet applications before. Participants were
randomly selected to be in one of the two conditions.

For their participation in the study, participants were given a
$20 gift card to Starbucks. The study was designed to take between
60 to 75 minutes, although participants took between 60 and 120
minutes.

4.3 Observation & Coding Procedures
To answer RQ1 (How do people approach data analysis using CotR
vs. using a text-based information source?), we analyzed the screen
recordings of the participants’ interactions with the interfaces. We
first coded when certain interactions were used (e.g.,modifies filters
to only see Naseem’s products in chart; or opened window contain-
ing the Git visualization), and then looked for patterns in these
observed interactions. Common strategies were grouped together
to understand how the different interfaces were used during the
study.

To answer RQ2 (Do analysts obtain better insights faster when
using the CotR visualization approach compared to the text-based
method?), we coded the participants’ answers and transcripts of
their audio recordings, and compared those to the answers given
by the actual course TA. All numeric answers were in a range from
1 to 5. We computed the accuracy of the answers of the participant
(P) as the difference between the numeric rating given by the TA
and that given by the participant as: − |TA-P| so that a score of
0 is the best (same as the TA) and a score of -4 is the worst (TA
gave 1 or 5 when the participant gave 5 or 1, respectively). For
each question, the TA also gave an explanation for their rating.
Hence, we coded the verbal answers given by the participants. If
the participant expressed the same explanation as the TA (we refer
to this as articulated common reasoning), they were given an extra
point for accuracy, in answering that question.

We also counted the number of times each participant expressed
utterances of difficulty or frustration and we counted the number
of times each participant mentioned specific numbers during their
analysis. In answers to Q2 (where participants had to assess the
collaboration of each of the team members), we coded the different
aspects of the data that participants mentioned. These different
possible aspects are as follows: the relative amount of collaborative
products; how well the team member contributed products over

time; types of products; how the individual worked with other team
members in terms of the number of fellow collaborators, or with
whom they collaborated more frequently; their number of products;
their number of collaborative products. Only Q2 was coded in this
intensive manner because it was the first complex question in the
session.

4.4 Results
In this section we present the results of our study and address the
research questions.

RQ1: Data Analysis Strategies
In answering RQ1 How do people approach data analysis using

CotR vs. using a text-based information source?, we observed general
approaches that were used by participants in both conditions, and
some approaches that were used in one condition, but not the other.
Data Analysis Approaches used in Both Conditions:
• Participants from both conditions generally looked at an overview
of the data before filtering the products by different team mem-
bers and other attributes (e.g., number of contributors). This
unguided procedure follows the common visualization mantra
“Overview, filter, details on demand” [1].

• Although the data was in a time series, time was not always
used as a factor in participants’ analysis; however, in answering
Q2, more visualization condition participants than text condi-
tion participants mentioned time as a factor in describing the
nature of the collaboration for each individual, likely because
the visualization prominently displays a timeline.

• As the session went on, participants in both conditions inter-
acted less and less with the interfaces, which may suggest that
through the process of answering the previous questions they
gathered information in their memory.

Differences inDataAnalysisApproachesBetweenConditions:
• In answering Q2 (assessment of individuals’ collaboration), text
condition participants would sometimes filter the amount of
products between each of the team members rather than going
through each team member and viewing their products with
more than two contributors. This was a more work-intensive
approach because it required more interactions and the ability
to compare the number of products of all team member pairs.
This approach was less frequent in the visualization condition,
possibly because of how the contributor streams of collaborating
team members appear when viewing an individual’s products.

• While participants in both conditions interacted less with the
interface as the study progressed, this phenomenon was more
pronounced among participants in the text condition. This sug-
gests that data was better understood in the text condition, or
better conveyed through the Git visualization or mc1.

• Compared to the participants who used the text alternate, vi-
sualization participants’ note-taking had fewer numbers and
fewer words. Additionally, they used fewer precise numbers and
percentages in their answers suggesting that their reasoning
was more qualitative than quantitative.

• In answering Q1 (general assessment of team collaboration),
two of the eight participants from the visualization condition
did not interact with interface, but just looked at interface to
answer the question. Perhaps this is because the initial view
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Table 2: Results (average, standard deviation): quality of answers, time to complete each question, and efficiency (quality /
time). Faster times and greater correctness are bolded. Answers with significance difference are indicated with a *.

Q1 Q2 Q3 Q4 Q5
Average score for quality of answers

TEXT (-0.125,0.835) (-1.071,1.204) (-0.339,0.959) (0.75,0.463) (-0.571,0.535)
VIS (-0.286,1.113) (-1.179,1.539) (-0.554,1.094) (1,0) (-0.75,0.707)

Average Time (seconds):
TEXT (287.383, 151.938) (870.42, 245.971) (466.402, 306.194) (92.684, 40.401) * (78.059, 48.636)
VIS (244.844, 153.693) (869.588, 399.19) (629.556, 212.973) (224.748, 147.389) (89.033, 33.688)

Average efficiency (quality of insights / time (minutes)):
TEXT (-0.061,0.201) (-0.55,0.22) (-0.486,0.558) (0.585,0.377) (-0.342,0.419)
VIS (-0.161,0.467) (-0.665,0.596) (-0.404,0.457) (0.39,0.278) (-0.574, 0.602)

provides an overview of the team and contained all the products
and contributions in one window.

• When answering Q3, some visualization condition participants
would rapidly go back and forth between team members—likely
to create a view of contributions for each team member in order
to gain an overview of all members’ work relative to each other.
This comparative view was more available in the text alternate
condition: small individual commit graphs (Git Visualization) or
amounts in the mc1.

• Finally, when answering Q5, visualization condition participants
filtered products based on the number of contributors—actions
that had been done earlier in the session. This suggests that these
participants would benefit by being able to save their views or
see the stack area graph of contribution streams separated out.

In summary, while some approaches to analysis were similar
between conditions, there were several differences. CotR is a useful
alternative for generally assessing collaboration of the whole team.
The prominence of the timeline leads to characterizations that
include the contributions over time. It also seems that users of CotR
took fewer notes and that CotR is useful for more qualitative rather
than quantitative assessments.

RQ2: Quality of Insights and Time Taken In Table 2, we
summarize the results of our analysis of time and quality of results
in answering RQ2 Do analysts obtain better insights faster when
using the CotR visualization approach compared to the text-based
method?
Time Performance: Participants in the text condition took longer
to answer the first two questions, while for the later three questions
the participants in the visualization condition took longer. One
interface did not yield significantly faster results over the other
except when answering Q4; with the Welch’s t-test with unequal
variances and two independent groups, there was a significant effect
for the conditions (t(8.05) = -2.44, p < 0.05, Cohen’s d=1.22) with
the text condition being faster than the visualization condition.

The length of time people took to answer questions largely de-
pends on the participants’ approaches. The text condition partici-
pants answered in less time in the last three questions likely due
to the fact that text condition participants had access to multiple
overviews of the data and could internalize the data faster; hence,
coming up with answers required less interaction and subsequently

less time. The visualization condition participants were faster an-
swering the first questions because it presented a clearer overview
of the collaboration in one view. However, it is likely that difficulties
(learning the interface, having fewer views and remembering how
team members performed relative to each other) meant that the
data was harder to remember without manipulating the interface
again—meaning more time was needed.
Correctness / Quality of Results We consider correctness and
quality for each question.
Q1 & Q5: General assessment of team collaboration. We were in-
terested to see if there were changes in answers to the general
assessment question after using the interfaces. From the average
score of both questions, the text condition yielded slightly more
correct results that were closer to the TA answers and based on an
articulated similar reasoning; however, these differences were not
significant. The majority of participants in both conditions judged
the level of collaboration to be less than that specified in the TA
answers possibly because they lacked a comparative group with
which to measure performance. Viewing multiple student submis-
sions before handing out marks is an important practice as one
participant stated: “Once I have seen multiple groups and seen the
others’ collaboration, then I will have a better sense.”. The lack of
ability to compare with other groups might explain why most par-
ticipants (Q1: 5 TEXT, 3 VIS; Q5: 5 TEXT, 7 VIS) generally chose
the middle ranking (3/5 for “Acceptable Collaboration”).

It is interesting to note that three participants (2 VIS, 1 TEXT)
lowered their rating of the group in Q5 compared to their answer
in Q1, while one (VIS) increased their rating. It’s possible that most
participants felt tied to their older assessment. Some participants
noted that answering the more other session questions did not
change their assessment, or that a scale of 1 to 5 was too narrow
(that a change in mark would mean a change of 20-25% of grade).

Q2: Assessment of team members’ collaboration & Q3: Assessment
of team members’ performance. Figure 6 shows a breakdown of
the average quality answer for Q2 and Q3 for both conditions and
for each of the team members being assessed. All of the partici-
pants performed well. Text scores are slightly better overall, but
the difference in the results is not significant.
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Q4: Who would you want to work with OR not want to work within a
software development project. In answering this question all partici-
pants in the visualization condition included the name mentioned
in the TA answers in the want field compared with the 6 of 8 text
condition participants. One of the two text condition participants
who did not mention the TA’s selection said, “I tried to get the most
of [the data].I focused on some variables, [but] maybe didn’t have the
whole picture.”, while the other said, “I don’t think you can judge
based on the numbers here. There are many factors: Do they fit the
rest of the team? Do they fit the culture of the team?”.

Because the TA answers did not include any team members in
the not want to work with condition, we did not access participants
for their choices in the latter part of the question.

In summary, in general, the text condition yields results that
were closer to the TA answers than the visualization condition and,
for the later questions, took less time to complete. Compared to
the two participants who had heard of CotR before, all participants
had used a spreadsheet application at some point prior, and hence,
did not need additional instruction to figure out how products’
details were “encoded” in the product listings. As found in other
research, it is possible that the existing text condition interface may
simply work better or that participants did not have enough time
to become accustomed to the visualization interface [22]. Different
backgrounds in participants may also help explain the variability in
the quality of insights generated from the visualization condition:
visualization condition participantsmade up the top two and bottom
three quality rankings out of all the participants. We discuss these
results in great detail in Section 4.5.

Participant Experience
When asked about their experience, all participants in the visual-

ization condition and most participants in the text condition stated
that the interface was okay. Participants from both conditions iden-
tified some issues with their experience—especially when learning
and using the interface in terms of its form and data.

When asked what features they liked, many text condition par-
ticipants mentioned being able to filter the data—especially with
the TRUE/FALSE columns for each team member—and using charts
from the Git visualization and spreadsheet functions. Participants
from the visualization condition mentioned the colours of team
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Figure 6: Average (and standard deviations) of coded quality
scores of participants from both conditions for questions (a)
Q2 and (b) Q3.

Table 3: Suggestions to improve the text condition or visu-
alization condition interfaces from participants from each
respective group.

TEXT Condition VIS Condition
Macro operations to product
stats instead of interacting
with filters.
More visual views, differences
between team members, con-
tributions of individuals along
timeline.
Drill-down into commit de-
tails from products.
Summary of commit messages
available.

Improve learnability (instruc-
tions, recognition).
Display what elements are fil-
tered in or out.
Improvements to resizing
functions: remove buffers,
show resize height in legend
Considerations for scaling:
text box to select people, keep
colours alternating
Improvements for reading
data: highlight axis lines for
ease of counting, orient both
part of charts upwards

members, filters, button percentages, product icons and other hov-
ering functions. Participants in both conditions mentioned liking
the filters, adjustable time bins, and individual contribution area
graphs (i.e., contribution streams or Git visualization)—and indi-
cated features that should be included in interfaces for this type of
assessment.

When asked about what they did not like, three text condition
participants said “Nothing”; however, others mentioned that they
felt that they were missing details, that the interface was poorly
setup and not intuitive, and the data was at times overwhelming.
Similar issues were mentioned by participants of the visualization
interface; four participants found that the filter interface behaved
unexpectedly and was confusing to use, especially at the beginning
of the session. Other comments were about reading the stacked area
graphs; this issue is supported by how people often chose to filter
through team members instead of looking at the overall stacked
graph.

Participants were also asked if they could suggest anything to
improve the interface; these results are grouped together in Table 3.
Participants from the text condition suggested more high-level
improvements and additional functions (including suggesting visu-
alization views similar to those in CotR), while participants from
the visualization condition suggested more low-level improvements
and slight changes to the interface.

When asked about emotions they experienced, many participants
in both conditions said that they experienced no emotions (6; 2
TEXT; 4 VIS). Others mentioned frustration (3; 2 TEXT, 1 VIS),
uncertainty (2 TEXT) and confusion (2 VIS), suggesting that some
participants found this study challenging.

From coding the utterances of difficulty, the participants in the
visualization condition had slightly fewer exclamations (relative
to text condition); most utterances occurred when answering Q2,
where the participants had to first look at the data in some detail
to assess each team member.

In summary, participants in both conditions seemed to be chal-
lenged by the study. The visualization participants expressed slightly
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fewer utterances of difficulty. Suggestions for changes included
visualization features in the text condition and detailed design sug-
gestions for the CotR visualization.

4.5 Discussion
Learning the interface. In the visualization condition, both par-
ticipants with the highest and lowest quality of answers found
difficulty with the tutorials: “I think the [tutorial] videos were not
very helpful for me” and “I didn’t like the tutorial. [the interface]
was very easy, but the tutorial was not”. Hence, while more text
condition participants were at relative ease to filter products, many
visualization participants may have been still trying to learn the
interface. This means that more work is needed in order to design
an interface that follows similar conventions to the alternative con-
dition. Additionally, it would be useful to detect when participants
are showing signs of difficulty with the interface automatically and
then enable them to walk through different aspects of the tutorial
at a more leisurely pace.

Access to different data: In addition to product listings, text con-
dition participants also had access to the absolute number of com-
mits of each team member from the Git visualization. Hence these
participants had more sources of information to consider in their
assessment, which may have changed their opinion and provided
them with more details that the actual TA used. For example, from
Q4, selecting Dana as a team member with which to work was
more likely from participants in the text condition (5 TEXT; 1 VIS).
The Git visualization showed that Dana had the fourth highest
number of commits with an area graph of commits over time that
was similar to the other top committing team members; in the CotR
visualization, Dana’s commits were not available, and consistently
in each bin, Dana’s products were less than other team members.

Access to different views. Compared to the text condition, the
CotR visualization had a somewhat un-intuitive filtering interface
that confused participants (as evidenced by suggestions to improve
it). Taking extra concentration to learn this system may have hin-
dered participants’ analysis of the data in the chart. Furthermore,
the text condition was made up of three (or more) sheets that could
be revisited with a single click, whereas, to revisit previous views in
the visualization, participants had to select all the filter parameters
again. Hence, this additional action cost more time and took more
concentration away from understanding the data. Finally, partic-
ipants seemed to appreciate unstacked area graphs of products
of each team members’ contributions, as they frequently filtered
by single members. Unstacked area graphs of commits were pro-
vided in the text condition’s Git visualization for easy comparison
between the team members. In the CotR visualization, to see this
unstacked view, participants had to interact more with the interface.

4.6 Limitations
The small number of participants (8 in each condition) meant that,
for the most part, it was not possible to find if one interface yielded
results that were significantly greater than results from the other.

By comparing the coded results to the TA answers, we compared
the participants with someone who had much greater knowledge
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Figure 7: Average difference in ratings for Q2 between ad-
justed participant and TA answers ratings (e.g., highest rat-
ing of team member is 1; lowest rating is -1; otherwise 0)

and background about the data and access to multiple teams’ per-
formance for context.

Additionally, although the data was extracted from the GitHub
repository that is used to assess students’ work; the main elements
of the text office (Libreoffice) were not used in real student assess-
ments and only chosen because it offered an interface with much of
the same functions as CotR. The actual GitHub interface and project
documents would be better for comparison to CotR; however, they
could not be easily anonymized for the study.

5 CONCLUSION
We presented CotR, a visualization approach for understanding
collaborative work over time. Within each time bin, CotR displays
products in stacks with links running through them indicating indi-
viduals who worked on them; an aggregation of these contributions
is represented by a stream below. We presented the results of an
empirical study that compared CotR to a text-based approach for
analyzing collaboration and outcomes in GitHub projects. We com-
pared the quality of answers, time to answer, and approaches taken
to analyze the project collaborations by two groups: one that used
the GitHub data displayed in a spreadsheet; the other group used
the GitHub data displayed using CotR.

We identified different approaches that people used to analyze
collaboration in CotR versus the text-based alternative. We found
that the text alternate condition yields slightly better answers to
the questions and, after the first two questions, resulted in faster
times to answer. We found that CotR may be more applicable when
considering qualitative assessments. Compared to the text interface,
CotR resulted in more variation among answers and less use of
precise numbers in the answers. Participants made several detailed
design suggestions for CotR. It is interesting to note that when asked
what an ideal interface would be, one text condition participant
suggested a visual interface similar to the design of City on the
River:

Let’s say like we have the time bins; we could see how many differ-
ent commit messages happened in a time bin. We could see what are
the people that each person collaborated with the most. In which peri-
ods of time there were more people collaborating together. How many
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different contributions one person did in each time span to which prod-
uct. Breakdown by time bin, breakdown by product, maybe filenames.
That’s what comes to my mind.

There are several areas of future work. CotR’s current design
and prototype implementation does not scale well. Large numbers
of products result in tall product stacks and smaller product boxes.
If products’ heights are reduced such that their shading is not
visible, the analyst loses the ability to spot clusters in the product
stacks. More effective techniques in the implementation (e.g., more
aggregated or partial rendering of data) may overcome this issue,
but such large datasets are outside the scope of our initial studies.

CotR currently represents two timelines: the product stacks and
the contributor streams; however, it is possible to add additional
timelines by overlaying, replacing, or positioning within the ana-
lyst’s vision. This opens the possibility to display timelines contain-
ing total group size, annotations, events, comparative performance,
and more.

Finally, CotR can be compared with other similar visualization
approaches (e.g., Storylines [7, 14]) to see how CotR performs in
strictly visual environments. It would also be interesting to conduct
studies of CotR in other application domains.
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